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Abstract

This report describes a new method for determination of the geopotential, or the

equivalent geoid. It is based on Satellite-to-Satellite Tracking (SST) of two co-orbiting low

earth satellites separated by a few hundred kilometers. The analysis is aimed at the GRACE

Mission, though it is generally applicable to any SST data. It is proposed that the SST be viewed

as a mapping mission. That is, the result will be maps of the geoid or gravity, as contrasted with

determination of spherical harmonics or Fourier coefficients. A method has been developed,

based on Geophysical Inverse Theory (GIT), that can provide maps at a prescribed (desired)

resolution and the corresponding error map from the SST data. This computation can be done

area by area avoiding simultaneous recovery of all the geopotential information. The necessary

elements of potential theory, celestial mechanics, and Geophysical Inverse Theory are described,

a computation architecture is described, and the results of several simulations presented.

Centimeter accuracy geoids with 50 to 100 km resolution can be recovered with a 30 to 60 day

mission.
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I Introduction

Thisanalysisis focusedon theGravityRecoveryandClimate Experiment (GRACE)

mission, to map the earth's gravity field, or geopotential. The GRACE mission concept was

based on extensive experience with dynamic satellite geodesy, using well established methods

and with the confidence based on very good results. Though there is no doubt that the existing

methods will satisfy the mission requirements, we propose here an alternative methodology for

analyzing the mission data that can provide a different type of result, some analysis advantages,

and possibly lower analysis cost. The basic objective is to determine regional geoid maps,

directly from the satellite-to-satellite (SST) tracking data, without recourse to global spherical

harmonic solutions. Regional maps could be produced based on 30 to 60 days of mission data,

allowing investigation of temporal changes with monthly variation.

This report lays out the methodology for this mapping analysis, providing the necessary

elements of potential theory, orbital mechanics, and estimation theory. It is apparent that with

0.5 _t/sec SST data, centimeter accuracy geoid heights, with 50 to 100 km spatial resolution and

monthly temporal resolution, can be recovered. Though, there are still details to work out, this

objective can be met.

The concept of a Satellite-to-Satellite Tracking (SST) mission is simply to calculate the

gravitational force acting on a spacecraft from changes in its measured velocity. The satellite

itself is the sensor, and its velocity, the observable. This is pictured notionally as follows.

Consider a satellite in orbit around the earth approaching a region of excess mass. As the

satellite approaches, it is accelerated toward the mass, and after passing the mass, it is

decelerated. By measuring the time history of the velocity variation, an estimate of the

magnitude and position of the mass excess can be deduced. Or course, the actual situation is

much more complex for several reasons: the structure of the earth's mass distribution is very

complicated, other forces act on the satellite, only one component of the satellite velocity is

measured from another satellite, and the observations contain errors. In the SST concept, the

second satellite could be very high, say in geosynchronous orbit or on another planet - the high-

low configuration. Alternatively, the second satellite could be in the same low orbit, trailing the

first low satellite - the low-low configuration. In the low-low case, the second satellite would

experience similar velocity changes, but at a later time.

SST tracking has been realized in a number of missions. The earliest example of

Doppler tracking a satellite from a point not on the body being studied is the mapping of the

lunar gravity field by means of lunar orbiters tracked from the earth [Muller and Sjogren, (1968)

]. Since this remarkable success, there have been notable Doppler tracking experiments for

earth satellites: the tracking of Geos-3 from the ATS geosynchronous satellite. These are

examples of the high-low configuration. There have since been numerous examples of tracking

around Mars, Venus, and Eros: also examples of the high-low configuration.

A number of analytical strategies have been employed. The most common is to treat the
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SSTdatain thesamewayasothertracking data, and determine spherical harmonic coefficients

of the body under consideration by variants of the method of least squares: an estimation

problem in a finite-dimensional vector space of parameters. There are significant computational

issues with global solutions [Bettadpur et al., (1992) ]. In any case, these solutions would

benefit from the high accuracy of the SST tracking data, but do not make any use of the unique

geometry of the SST data. These ideas have been applied to estimating gravity anomalies

[Vonbun et al., (1978) ]. Alternatively, the analysis can be clone as a mapping of the acceleration

field at the satellite's altitude [Muller and Sjogren, (1968) ]. Studies have also been done on

mapping the acceleration of potential at the earth's surface [Colombo, (1981) ; Rummel, (1975) ;

Rummel et al., (1978) ]. Studies of recovery of fourier coefficients at satellite altitude have also

been made [Kaula, (1982) ].

The analysis described in the sequel employs a generalized inverse theory (GIT) [Backus

and Gilbert, (1967) ; Backus and Gilbert, (1968) ; Backus and Gilbert, (1970) ; Backus, ( ! 968) ]

to convert the observed velocity measurements to a mapping of surface values of geoid height.

The ill-posed boundary-value problem and the unstable downward-continuation problem

[Bullard and Cooper, (1948a) ] are addressed in a way that the additional assumptions used to

obtain the solutions are clearly identified and an error estimate is found. On the way to this end,

a semi-analytical solution of the problem of calculating satellite perturbations caused by the

anomalous potential will be formulated. Such a solution provides insight into the proposed

measurement mapping, and significant computational economies. It gives a direct way to

calculate analytically partial derivatives for the observable (velocity) with respect to the desired

end product (the geoid). The analytical solution also allows the kernel function in the

generalized inversion to be calculated directly.



II Background

It is seen to be obligatory in this section to provide a prolix, far ranging, penetrating, and

relevant review of the scientific objectives and uses of the analysis to be described in the sequel

as well as a similar critical - in the classical sense - review of the past work. Since there are a

number of carefully written reports available,[anon., ( 1979); anon., ( 1997); Kaula, ( 1970);

Nerem et al., (1995 Aug 10)] this discussion will be limited to a few remarks on the method.

Before, October 4, 1957, individual surface gravity measurements were made and

essentially local gravity or geoid maps produced. Attempts to produce global gravity, or geoid,

models from these data produced rather simple ones. Tracking of artificial earth satellites very

soon produced significant improvement in knowledge of the global gravity field. The difference

was that satellites provided a global sensor, that allowed measurement of large scale features of

the geoid. In the succeeding years, analysis of tracking data has produced remarkable results, all

based on using the integrating property of satellite motion. Combining the large scale

information, from satellite tracking, with the small scale information from surface

measurements -- surface gravity, or more recently satellite altimetry -- has produced combined

models of remarkable resolution and accuracy. This has required development and refinement of

algorithms and orbit computation methods for determination of spherical harmonic

representations, which will be referred to as classical satellite geodesy..

Satellites provided two significant advantages. First, orbital motion samples large scale,

long wavelength, features of the geoid. Second, satellites can quickly sample the geoid

everywhere. The idea that a satellite samples the geoid everywhere was first dramatically

shown, not for the earth, but for the moon by Muller and Sjorgen [Muller and S]ogren, (1968) ]

with observation of MASCON's. Though the geometry is quite different - the lunar orbiter was

observed from the earth where this analysis has two co-orbiting earth satellites, one tracking the

other - the principle is the same: viz that instantaneous relative velocity changes are due to the

difference in potential of the two satellites. So, to proceed in a rigorous way, one needs a

mathematical formalism for: a) the potential mapping, b) the relation between potential and

satellite velocity, and c) an estimation procedure. The estimation procedure chosen,

Geophysical Inverse Theory Spectral Expansion Method (GITSEM), seems to make fewer

assumptions about the form of the model, defining representation basis functions derived only

from the observation geometry. It also provides a rigorous method of solving the downward

continuation problem. The end result is intended to be a direct mapping of the satellite-to-

satellite (SST) tracking measurement to geoid maps - the choice of geoid maps or gravity

anomalies being quite arbitrary. The method can be used for any size map, including a global

one, though in this case there seems to be little advantage of the method compared with a

spherical harmonic expansion. In addition, a rigorous error estimate is also available.

The view represented in this analysis, is to build on the results already available from

classical satellite geodesy geopotential solutions. At present our knowledge of the low degree

and order terms in the spherical harmonic model of the geopotential is quite good. We will
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assume that up to a certain degree and order, a reference field can be adopted. In fact, the theor)'

and implementation allows one to calculate local corrections to this model if needed. For

example, in this analysis a reference field to degree and order 40 and another to degree and order

90 were used. The derived map is then a correction to this reference model.
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III Elements of Potential Theory

The underlying mathematical framework of Geophysical Inverse Theory is based on

potential theory. There are two facets of this discussion: 1) The solution of the boundary value

problem in Geodesy, and 2) The downward continuation problem. There is an extensive

literature on both of these topics ([Heiskanen and Morit:, ( 1967); .1ekeli, ( 1981 ); Morit-,

(1980,1989)]), and so we limit ourselves to a few remarks to define the notation and relations

used in this analysis.

From classical potential theory [Kellog, (1953) ], the geopotential, q_(r, to,k), -

depending on the spherical coordinates r, the distance from the origin i.e. the center of mass of

the earth, tO,the geocentric latitude measured from the equator, and k, the longitude measured

from an arbitrary point on the equator [1AU, (1983) ] - is harmonic in free space, i.e. is a

solution of Laplaces equation in three dimensional space exterior to all attracting masses, has

continuous second derivatives, and is regular at r=oo. Therefore, q_ is analytic. There are a

number of issues of principle concerning other masses (the earth's atmosphere, The Sun, Moon,

planets, galaxies etc.) that we treat with various approximations, viz, the atmosphere is modeled

as an equivalent surface layer, the sun, moon, and planets are moved to ooby removing their tidal

potential, and the remainder of the universe is regarded has having a negligible effect.

Therefore, given the values of the potential everywhere on a known surface enclosing all the

earth's attracting masses (the Dirichlet boundary value problem), _ is uniquely determined

everywhere outside that surface.

If we chose the surface to be a sphere of radius R, centered at the earths center of mass,

then q' is given by Poissons Integral Formula [Heiskanen and Morit-, (1967), p35; Jeffreys and

deffrevs, ( 1956,p221 )]

R(r 2 _ R 2) 2,e /_ W( R, qJ 2)cos_p'd_o'd2

;,; I J p3 (3.1)
,;.'=0 o'=- _r/_2

where, p, the distance from the integration point on the sphere (R,to',k') to the sample point

(r,to,_v) is given by

p2 = r 2 + R 2 _ 2rRcos _ (3.2)

and

cos_ = sin_osin_o' + cosqJcos_o'cos(2 - _)_
(3.3)

_N.B. We have written these expressions in terms of the latitude, to, whereas they are

often written in terms of the colatitide, 0=rd2-to. In this report we will freely use both

conventions, strictly adhering to this notation.
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For example, R can be chosen to be: a) just below a satellite orbit, or b) small enough to just

enclose all the attracting mass (6384403m).

Poissons Integral Formula makes no assumption about the mathematical form of qJ, only

that it be harmonic and regular at infinity. However for both theoretical and practical

applications, much use is made of spherical harmonics: solutions of Laplaces equation by

separation of variables. Now Laplaces equation in spherical coordinates is:

r" c_ 2 _-2r -_ tan rp + -- 0. (_,.4)de: cos"g,
Assume than one can write tt' as:

q'= R(r)P(¢)F(2) (3.5)

Introducing the constants n(n+ 1) and m: (m and n turn out to be integers) we find:

rT,i-R(r) = 1, , (3.6)

P(#)= P,_,(sin (p) (3.7)

the ubiquitous Legendre functions, and

cosm2

F(2) = sin m2 (3.8)

Conventional usage is to call n the degree of the Legendre function and m the order of the

Legendre function. The combination P,,m(sin cos m2
cp) sin m2 are sometimes referred to as surface

rl; P,,,,(sin [costa2
spherical harmonics and tp) sin m2. are sometimes referred to as solid

Jrn- 1

spherical harmonics. It has also common to denote the surface harmonics as:

cos mR

Y,,, = P,m(sin (P)sin m2

The functions Y_ are orthogonal. That is when integrated over the sphere:

(3.9)

P,,,(sin rp) cos mAP, r (sin (p)cos mRdo" = O[ s :_ n, or, r ;e m

ff P,,,(sinrp)sinm2p_r(sin¢)sinm2do-= O0ls , n, or, r _: m

(3.10)

P,,,(sin _a)cosm2Psr(sin _a)sin mAdo- = always

with

do- = cos r/r/t, ad2 (3.11)

It is convenient to define fully normalized Legendre functions P,=(sin _p) such that the integral
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over the sphere is:

!_(-- " c°smA'_-_sinP,m(Sm _0) mAI) do- = 4z. (3.12)

We have:

- cos mAI a/ (n - m)! [cos mA
P"'(sin g°) sin mA = v(2-8m°)(2n + 1) (n +_.tP,,,,(sin _p)lsin m2 (3.13)

0{n _ m= Formulae for calculation of P,_,(sin_)with the familiar Dirac Delta function _,,,, 1 n = m

can be found books on Mathematical Physics and Physical Geodesy. Great care must be given to

accurate calculation for high degree and order functions and their derivatives.

It is easy to see that outside a sphere of radius R, enclosing all attracting masses, the most

general solution, that is regular at _, can be written:

1W(r,q_,2)=--GM_" R P,_,(sin¢ ,,cosm2+Somsinm2,R<r<__ _ . (3.14)
r n--0 -

where G is Newtons Gravitational Constant (6.67423+0.00009 x 10 _ cm3/(gram sec2), and M is

the mass of the solid earth, ocean, and atmosphere, GM=3.98600.44177±0.0000000010 x 10:°

cm3/sec 2. Now if, as supposed with Poissons Integral formula, qJ is known everywhere on the

sphere r=R enclosing all attracting mass, then q'(R,_,_,) can be represented in terms of a surface

harmonic series given by (3.14). The determined geopotential coefficients -- C,,,, S,,, - then

provide the representation of • everywhere outside R.

The downward continuation error (DCE) is usually framed in terms of this

representation. The DCE arises from the need to know h° at or near the earth's surface, a point

where r_R, and (3.14) diverges. In principle, one can obtain a series, using spherical surface

harmonics, that represents _, provided one assumes knowledge of the attracting mass

distribution above the sphere of radius r.

n __

W-(r,¢,2)- GM'_z_,P,_(sin_o)[-(_,(r)cosm2 + S_sinm2],O<r<_ R (3.15)
/" n=0 m:-0

It must be emphasized that the resulting representation, _- has potential coefficients that

depend on r- the distance from the earth center of mass to the desired point: e.g. the earth

surface or geoid - i.e. c_-:._ s R [Jekeli, (1981) ,p36]. This is not a representation in solid
Is.2(r)

spherical harmonics, and that the coefficients in (3.14) and (3.15) are not comparable for r_R.

Other than a representation of the potential for r<R, given knowledge of the coefficients

C_,(r),S_(r). it is unclear how to use this representation.

In the practical application of(3.14) to satellite orbits, the infinite sum is truncated to
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termsn < _ for two reasons, one practical - it is impossible to numerically perform an infinite

sum - and the other fundamental. The measurement(s) to be analyzed are of finite accuracy,

and there is a point where higher degree and order terms have no sensible affect, and are

therefore ignored 2. Therefore, no matter what data analysis techniques are used, e.g. satellite

perturbation analysis or direct mapping of acceleration of potential difference, the resulting

geopotential is smoothed, or averaged, usually characterized by the limiting degree of spherical

harmonic representation, i.e. W _ .

(r, tp,2) = -- P,,_(sin_p) ,_cos m2 + S_ sinm2, R ___r _<o0 (3.16)

There is also the partial sum of(3.15), i.e.:

- z_ _ P,,(sin ¢ (r)cosmR+ST=sinmAO<-r<-.R (3.17)
r n=0m=-0

Now for r>_R, a spherical harmonic coefficient representation of hv has two sorts of

errors: 1) errors of commission, i.e. errors in the coefficients themselves, and 2) errors of

omission, i.e. errors due to ignoring the higher degree and order coefficients. If we let the true

geopotential be _ , and the true geopotential truncated be t_,_ we can define the error of

commission as:

tl.,_ ti.,_,c( t=+"-
and the error of omission as:

= 7 _ " (R _,m(Sintp)[< _ cosmR+<_sinm2],R<
n=ff-I -

(3.18)

r<m (3.19)

Now the error of commission is compounded by the present practice of evaluating (3.16), for

r<R to obtain smoothed values at the earth's surface [Bullardand Cooper, (1948b) ]. which is

convergent everywhere. However, the errors in the coefficients are amplified by (R/r)" for each

order. If we contemplate fields of degree 360, then the error amplification of the degree 360

terms for a geopotential representation derived from data on a satellite at 450km altitude would

be ((6378+450)/6378)_=4.6x10 j°. For degree 180 the amplification is only 2.14x104. Errors of

commission will grow very dramatically. Though one expects the higher degree and order

coefficients to be smaller than the lower degree ones, (Kaula's rule of thumb [Kaula, (1966) ]),

they are also more difficult of determine, and consequently the uncertainties will be larger.

Second, we have the representation error: the difference between (3.16) and (3.17):

e_ q, = _i,_ - _-" (3.20)

2This assumes that the size of higher degree and order terms - as measured, for example,

by the degree variances - continue to decrease, as models suggest [Kaula, (1966) ]
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whichdependson the degree and order of series truncation. In a careful and detailed analysis

Jekeli, [.1ekeli, (1981) ] has shown two critical results. Jekeli combines the error of

representation (3.20) and the error of omission (3.19 suitably generalized for r<R as 3.17) as the

downward continuation error - the error of commission is not included. Jekeli, with _ = 300,

finds (tables 3 and 4) that the DCE largest near the poles o(e,) <0.090 mgals (0.290 mgals max)

gravity anomaly and o(er) <0.042 cm (0.14 cm max) geoid height. Second, by seeking

anomalies averaged over a spherical cap of about 1.4 degrees (tables 6 and 7), the DCE - again

largest at the poles, is estimated to be O(er) <0.004 mgals (0.014 mgals max) gravity anomaly

and o(er) <0.0020 cm (0.0066 cm max) geoid height. Therefore the conclusion of Jekeli

[.lekeli, (1981), p127] "The downward continuation errors depicted in tables 3 through 7 are

completely insignificant with respect to anticipated measurement accuracies of 1 mgal and 10

cm in the gravity anomaly and geoid undulation, respectively." And, ".. the estimation of point

or mean gravity anomalies and geoid undulations (height anomalies) using the outer series

expansion to degree 300 anywhere on the earth's surface is practically unaffected by the

divergence of the total series." This issue was discussed again [Wang, (1997) ] who confirms

Jekeli's analvsis: viz" .., the method of smoothed analytical downward continuation can be

used to determine the earth's gravitational potential to any required accuracy."

The basic potential theory formalism has been presented, and the relevant formulae

defined for use in this analysis. The downward continuation error of commission is controlled

by suitable averaging, which is inevitable given a finite spacing of the data and a finite number

of observations. Therefore we adopt the earth equatorial radius (R=6378137 m) for the

reference sphere. We see that the essential problem of downward continuation is controlling the

growth of numerical error of commission. We turn to data analysis methods that provide tools
for this.
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IV OrbitalTheory

In discussingtherecoveryof gravityanomalies,Ag,or geoidheights,N, with SSTdata,it
isconvenientto haveanalyticalformulaerelatingsatellitepositionandvelocity(thestatevector)
to thedesiredquantity. Suchformulaealsoenablethesensitivity,orpartialderivativesof
gravityanomaliesandgeoidheightsto bemoreeasilyobtained.Otherwise,onemustresortto
costlynumericalmethods,with consequentlossof generalityandinsight. With this motivation,
weproceedon two levels. First,somesimple illustrativerelationsareobtained.Thenamore
completetreatmentwill bedeveloped,for usewith theactualdataanalysis.

Consider,first, the theorem of conservation of energy for the satellite orbit. Of course,

drag and radiation pressure perturbations would have to be taken into account if the following

relationships were used for analysis of actual data. Let the total potential be represented by _,

which for convenience, can be separated into a reference potential, p,/r+U, and an anomalous

potential, T, i.e.

W = fl---+U + T (4.1)
r

In the conventional physical geodesy notation, U is the normal potential corresponding to that of

a reference ellipsoid. However, here we prefer to view it as a reference, or adopted potential,

with T being the remaining (unmodeled) part that we seek 3. If we write the kinetic energy as

½mv 2, with the vector components of velocity along track (vu), cross track (Vw), and radial (Vs),

then

1(_ _ 2)-- v._ + v,', + v w + W = constant
2

(4.2)

For a satellite with small eccentricity, we can treat the along track velocity as the unperturbed

velocity, Vo, which gives vu=Vo+_Svu, vs=_ vs, and vw=_5 vw. Therefore, to first order in small

quantities, we have

3Some confusion is bound to occur because the anomalous potential, or disturbing

function, is generally denoted by R in celestial mechanics, and T in geodesy. Also the sign

convention for potential in physics is reversed from that in celestial mechanics and geodesy.

d2_
Here the force /_ = Vq j = m _. Finally, for convenience in this section, we refer to the

dt 2

product GM=_t.
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_7_'u=/_vo (4.3)

This formula was first derived by Wolf [Wolf, (1969) ] and subsequently used by many others.

For small eccentricity satellites, equation (4.3) gives the change in along track velocity, as a

function of the potential in space (i.e. position and time) to about 10%, the errors arising from

the change in radial distance owing to T interacting with g/r+U. Equation (4.3) is a direct

mapping to the potential into the along track velocity, and could be used as a first approximation

for inverting observations of _;vr to determine T.

For a more complete theory, following the treatment in Brouwer and Clemence [Brouwer

and Clemence, (1961 ) ], using the potential, tt', we can write the equations of motion as

d2x x 8U+T)

-_+ p_-r

d2y v _(U + T)

dt 2 r- &

d2z x O(U+ T)

dt 2 +#-7-

(4.4)

where la=GM =3.986x I 02° cm3sec 2 and

r 2 = x 2 + 7 2 + z 2 (4.5)

If the coordinates are r, u, and tO, where the longitude from the equator crossing in the orbit plane

is u=f+o), (true anomaly, f, plus argument of perigee, o), and tO is the latitude 4 then the

equivalent differential equations of motion are:

d2r (du) 2 - r[d_o]2 l.t d(U + T)-- - r cos 2 + -

dt 2 q_(-_) L at ] r 2 dr

d(r2 -dr) 3(U + T)COS2 09 =
dt\ du

+ sin _0cos_o -
dt\ &p

(4.6)

4The derivation is general. Below, the orbit plane will be used as a reference, and

perturbations in along track (15u), cross track (6w) and radius (_ir) will be developed. In this case

the latitude, tO, will become the cross track, w, component.
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To obtain an expression for the potential, U+T, as a function of position (and time), we

begin by assuming that the potential on the earth's surface at r=R is (U+T),e,(R,t_,k), where R is

the radius of the earth and k is the longitude. To express T in an inertial system appropriate for

equation (4.4) or (4.6), we have (U + T)/,_ (R, ¢, 2- O(t)), where O(t) is the sidereal angle at the

time in question. For the moment we ignore the effects of a moving equator [Gaposchkin,

(1973) ].

Following the discussion in section Ill, since (U+T)(R,_,k) given on a sphere is the

Dirichlet boundary condition for Laplace's equation external to the sphere r=R, we can use the

basic results from potential theory to obtain T at any point in space outside this sphere, see

section III. Therefore we can expand T in terms of orthonormal base functions (associated

Legendre polynomials) as

--if- _ _ Pnm(Sin cosm2 +,_ sinm2(U + TXR,(0, 2) = _o m nm
: m:-0

(4.7)

which, using the properties of solutions of Laplace's equation in spherical harmonics, can be

upward continued as

(U+T)(r, qg,2)=---__z_._oI_ ) Pnm(Sin (° mCOSm2 +S nm sin m2] (4.8)

Alternatively, since U+T is harmonic in space, we can use Poission's integral to obtain

(U + T)(r, rp, 2) = R(rZ- R=) 2i _/i (U+ T)(R, cp',2')
4_r p3 COScp'd_o' d2' (4.9)

/. '= 0 ¢ '= - ,'rI2

where p is the distance between the integration point R,_',k' and the sample point r,_).; it is

often written as

p2 = t.2 + R 2 _ 2rRcos C/

_/being the central angle, which can be expressed

cos _ = sin _, cos ¢'1+ cos ¢ocos rp' cos(2 - 2' ).

(4.10)

(4.11)

Now, assume the motion of the satellite is given in two parts: i.e.

-14-



X = X o + ,_C

y= yo+dy

Z=Zo +_

where xo,yo, and Zo satisfy

d2xo x o 6"(7

dt 2 _ 7 C3Xo

d2yo Yo

a?   7=g7o
dZ z o .,

,it 2 r0 dZo

(4.12)

(4.13)

and r=ro+fr. We also have

d ( U + T)- cg(U + T) dx + d( U + T) dy +
d:, &

d(v+r)d(U + T) - cg(U + T) dr + du +
c_ du

d( U + T ) d z

_U + T) dq9
(4.14)

and

_U + T) _U + T) _U + T) _U + T)
r -x +y +z

c_ dr _ dx
(4.15)

Now, multiplying (4.4) by 2dx,2dy, and 2dz respectively, adding, and integrating the
result we have

---+--=2 T)
+ +\dtJ r a

(4.16)

where la/a is an arbitrary constant of integration. This is chosen such that

Cdx._._12-or. (_2 + (_2 2/a /a+__=2 _dU
\ dt ] \ dt J ro a

(4.17)
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is satisfied. In termsof polarcoordinates(4.16)become,

2 r2 (" du_ 2 r2 do 2/.* /2
-- -- --}- -- -'2+ +  -aT) r a (U + T). (4.18)

Again, multiplying (4.4) by x,y,and z respectively, adding sing (4.15) we have

d2x d2y d2g 12 d(U + T)

--+y-ffti-+z - +--=rX dt 2 dt 2 r _¢"
(4.19)

or in polar coordinates

r w -

d2r

dt r 2 I--_--12 '_( d(P'] 2 /-_cos" rp -r'2--_) +/a=r_r (4.20)

Adding (4.18) and (4.20) we have

1 d2r 2 f cg(U + T)
'u+'u=2jd(U+T)+r

2 all 2 r a
(3 _.1)

Now using r=ro+fr, and subtract the reference orbit

i c_TY1 d2r_ 2 /2 _--2 dU+r

2 at 2 ro a dr o
(4.22)

to first order in small quantities _ir and T we have

d 2 ( ro(Y_ ) 4 ro(y _ 2_clr +ro_r araw+ = _+ =0_.r° dr dr -
(4.23)

We also have
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d2gzr kt d/" ( 1 1

--+ _a'=--+/./_, 3 3dt 2 7-; dr ro r
o

d'- _ + __y dy : ---_ + 1_ r 3
dt 2 ro

d 2& _____& dF ( 1 1

dt 2 r_ _ \ ro r

Now, a solution to (4.23) and (4

Clemence, (1961) ] chapter XIII) for the

track (Sw) and can be written:

dr = IXsin[f- f'ldf'

du = I[ I Ydf - 2 _]df

dw = IZ sin[f - f' ]df'

where

G

Qv (4.24)

2

. due to Hansen, can be found ([Brouwer and

,-turbations in radial (80, along track (Su) and cross

(4.25)

X ._.. __

r 3

14o
Or= 2 dT+rm+rr

dr

r 2 c717
Y=

apdu

r 2 t;7I"
a __. ___

140c7W

(4.26)

where rt=GM=no2a,,3and p=a(1-d). Here, the integration variable is the true anomaly, f, but for

practical numerical implementation, we will use time as the variable of integration, using

(<2df = n _l-e: dt _ ndt
\ r,/

(4.27)

In equation (4.26) we interpret dT as

m or/- drdT = dr dr + -- du + m dw (4.28)
dr du dw
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Therefore ydT = AT, the difference in potential fromi.e. the integral along the satellite path.

a reference point on the orbit to the point of interest.

Now, we measure relative velocity, and can obtain the perturbation in velocity - in

radial, across track, and along track direction - as:

dt (1 e2) 3/2 Xcos(f-f')df'-Xsin(f-fo)>
- _rx [s_

&' =r_fiu= )312 a r Ydf - 2_dt (l-e 2

_- b'_o = (1_ e2)3/2 Zcos(f-f')df'-Zsin(f-fo)

(4.29)

For illustrative purposes, these expressions can be simplified for small eccentricity. Of course,

in all numerical calculation, the full expressions (4.25) and (4.29) are used. The simplified

expressions are:

[ _7_}X = _n__al 2 i dT + a__+ _cTr

1 cTf
Y =

nE a o3t4

1 c71"
Z=

nZa

(4.30)

Now

and

2 _Xsin(i-f')df': ,---_.i's,n(/- ).t" +----
n2a n- - \ Gr

cZ/'.j'_sin(f- f' )df'

(4.31)
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,-I,[X cos( M- M' )dM'- X sin( M- M o ) _.l&r=n

o5,, = n{ IYdM- 2& } (4.32)
t %

&w= no

Equation (4.31) defines _ir in terms of (Sr/a)(0U/0r), and can be solved by iteration, as (dU/Or) is

of the order 10 "3. Now we can rederive equation (4.3) using the second parts from equations

(4.30) and (4.32)

6v,,= n(a _ T- 2@ = --nalT - 2n6r

where we can make the identification Vo=na. Now the second term can be written

(4.33)

na naa" v o a 2 v o dr _ a

which is simply the change in velocity due to the perturbation, fir, with the central force term, as

pointed out earlier.

We can now formulate the observable, A/_. We

have the satellites, P and Q, with position rp, rQ and

Vp, v-o . The relative position between P and Q is

(4.35)

the distance between them is

p= _/P" P,

and the relative velocity is

/,= f,. - %)

(4.36)

(4.37)

Now, we suppose that we have a reference orbit,

Fpo, too, Vpo, V_>o, and the true orbit, rp, ro, Vp, v--0 .

I

it: //

i /' x_

/

I /

/

i ///

V

Fi_ll_ 4.1

I_ v,:

/

Gc-omeu-y of SaCelli_ Pernu'b&t/o_

The difference, or perturbation, to be modeled is t_zp, t_Q, t:_-p, t:_Q. Now consider the residual,

or difference between the observed, assumed to be the true, relative velocity, and the relative

velocity computed from the reference orbit

ap=/,-/,o = p-bo -(% - %) (4.38)
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To definethe algorithm for calculation of the perturbed position and velocity, r, v, from the

unperturbed position and velocity, ro, v o , and the along track, 8u, across track, 8w, and radial

perturbations, 8r, (Figure 4.1 ).

We use the unit vectors

r=f'/_.r

F -.. /

_=_x_

(4.39)

for the radial, cross track and along track directions. More precisely, the along track unit vector

is normal to the radius vector, and not along the velocity vector, to be consistent with the

definition of the along track perturbation. So we can write

,4,/

dt

8 dw:  ,.vS-r o.L
dt

dt

(4.40)

These relations lead to the perturbed velocity

" _.1/'_

7 _ au

, dt
_al,f

Wl ""art
, _ ar

II

dt

(4.41)

Now, with two satellites (P,Q) at positions Xp and XQ, the unperturbed satellite to satellite

range Po is

,0o = /(._po - _Qo) • (._,o - £0o ) (4.42)

from which we can obtain the unperturbed range rate
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The corresponding perturbed range rate is

(4.42)

If we define

(4.43)

the perturbation in range rate, A,o = ,o 1 - ,o o , is

(4.44)

With this formalism, we give an example of this calculation. The full Cartesian

equations of motion for perturbed (true) and unperturbed (reference) orbits are integrated, in this

case with a 4 th order Runge-Kutta integrator with variable step size error control, set at 10-Io,

using 20 digit precision calculation. Both models include the quadrapole moment, J2. The

twenty four equations of motion are integrated. The quadrature of(4.25) and (4.29) is done

following the presumptive data to be obtained from the GRACE mission. We assume equal time

spacing of the data, nominally 10 seconds, and use a modified Simpsons rule [Hamming, (1973)

] quadrature formula. Using the unperturbed position and velocity, the six perturbation

equations (4.25) and (4.29) are integrated. In fact the time spacing for the Simpsons rule was set

to 1 sec, 2 sec, 5 sec, and 10 sec. The 10 sec quadrature interval had some error build up: for

actual data analysis, the perturbations should be calculated with a 5 sec or smaller time step.

This is not difficult, as the reference orbit can be obtained at any time resolution.

For illustrative purposes, two perturbing potential cases will be shown. The first, is a

single geoid height anomaly in the subsatellite path, and the second is with two geoid height

anomalies separated by 1 degree, --110 km, of equal size and opposite sign: a classical dipole.

These will illustrate some important properties of the perturbations, to be used in developing the

data analysis methods. Table 4.1 gives the initial orbit elements of the trajectories (the cartesian

coordinates are used), and table 4.2 defines the anomalous potential.
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Table4.1 Initial Orbit Elements

Satellite P Satellite Q

Epoch (MJD) 51478.000 51478.000

x (cm) 6.7743733337811697E+08 6.7743733337811697E+08

dx/dt (crrdsec) -2.2620699340959200E+04 2.2620699340959200E+04

y (cm) 1.0462759319408060E+06 -1.0462759319408060E+06

dy/dt (cm/sec) 4.0121087168058562E+04 4.0121087168058562E+04

z (cm) 1.9964134070442688E+07 - 1.9964134070442688E+07

dz/dt (cm/sec) 7.6555594831398176E+05 7.6555594831398176E+05

a (cm) 6.778E+08 6.778E+08

e 0.0001 0.0001

I (deg) 87.0 87.0

M (deg) 1.69 -1.69

f2 (deg) 0.0 0.0

(deg) 0.0 0.0

Table 4.2 Anomalous Potential

Case _o(deg) k (deg) H (cm) Size (km)

I 45.0 325.0 400.0 110.0

II 45.0 325.0 400.0 110.0

II 46.0 325.1 -400.0 110.0

Now, we let the unperturbed satellite position and velocity be -Xeo, Veo, and the
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perturbedpositionandvelocity be "_'PI ' V-PI"

So in figure 4.2 we show the change in

velocity _,

t_v e = vel - V?o for satellite P for case I, and
figure 4.3 shows the change in radius vector,

8r? = r?t - reo for satellite P. These are
obtained from numerical integration of the

equations of motion. If the analytical theory

for dye, 8re were plotted on the same graph,
they would overlay the numerical result.

Figure 4.4 shows the difference in the

numerical and analytical theory for 6re, dr?.
The rms difference between the numerical and

FlflUll_ 4J

\

dr= rP

i

¥

. . ¢

dv=vPl-vPo

J. . . ,_ ' , ,
t_

_- n*(dr[numerical] -dr[theory])

theoretical perturbations for the two curves is 2.4x 10 .5 (cm/sec) = 0.24 0t/sec) and 0.019 cm.

The long period structure in Figure 4.4 is an unmodeled interaction perturbation between _Srand

J2. With J2---0.0, the numerical and analytical theory agree to 10 _°. The high frequency 15v

noise is due to rounding error in data input to the plotting program, and not an orbital effect.

Figures 4.5,4.6,and 4.7 are the same quantities for case II, the dipole anomaly. The very

small _ir perturbation (0.18 cm maximum) results in negligible J2 interaction and long period

terms. The reduced _ir also results in smaller contribution to 6v. For case II, the rms difference

5 Strictly speaking we are plotting speed. Velocity is a vector quantity, and we measure

and analyze a scalar quantity, the speed. However, common usage is to refer to this scalar

quantity as velocity. In this discussion, vector quantities are always given as .Y, or._ for a unit

vector, and scalar quantities as x.
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_" °_L

R_u'e 4.5

/
/

S

G_la_

1

_dv--vPl-vPo

J

r

between the numerical and theoretical

perturbations for the two curves is 2.7xl 0.6

cm/sec and 0.0006 cm. N.B. that 0.0006 cm

gives 6.4xl 0.7 cm/sec contribution to the

velocity.

We now illustrate the difference in

velocity of two satellites, see table 4.1,

separated by 400 km, at an altitude of 400 km.

In figure 4.8 we show the difference in velocity

Fi_ 4.6
ay 1¢_1 C_e t

5
6

-_'ek

dr=rPl-rPo

J

]Fi_,m 4.7

i IIG_I
d.. _ or_ (,_.'O,zLc._ m

i
°1

Z

._ilo'el -

-i,I0_I i

e,_( )

Cme

.'_ul[l_ I _ 44)0 em C_o_l H_iffb_ AmomaJy

q

t

I

Fitch4.9
CI II

i .... (_o ' '_eo _ tin0

for case I. Note that here we plot the difference in absolute velocity, not the rate of change in

distance between P and Q. See section v for further discussion of this point. We also plot the

difference in anomalous potential, AT, between P and Q, and the contribution

ofnAr = n(_r i, - _rg) to the difference in velocity. Recall that Av _ A T+ nAr. The root

mean square, rms, difference between the numerical and theoretical perturbations are 2.5x10 "_

cm/sec in differential velocity and 0.0024 cm in differential radius (2.6x10 * crn/sec as
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velocity). Figures4.9showsthesamequantitiesfor CaseII. ForCaseII, thermsdifference
betweenthenumericalandtheoreticalperturbationsare2.9xl0.5cm/secin differential velocity
and0.0002cm in differential radius(2.3x107 cm/secasvelocity).

Jekeli [Jekeli,(1999)] hasstudiedthis issueusingtheenergyconservationtheoremwith
quitedifferentobjectives.Hepresentsanexpressionfor thecorrectionsto fiv to obtain AT. In

this case he proposes to measure these corrections "'in situ" with the GPS receivers on the

GRACE satellites. However, the requirements for the "in situ" measurements exceed the

present GPS capability.

The simple simulation shown here demonstrates a number of facts.

1) First we see the, well known, sensitivity of relative velocity to the anomalous

geopotentiai. Here we have postulated a rather large lxl degree 400 cm geoid anomaly.

2) The significant indirect effect of the radial perturbation on the relative velocity. To

make best use of the relative velocity measurement, one must treat this indirect effect. The

radial perturbation also has a significantly different time history (or fourier spectrum), with the

presence of long period effects. This should compared with the potential difference, AT,

contribution, which is more than 10 times larger, and is a local effect confined to the dimension

of the anomaly. This will be discussed further in section V.

3) The efficacy of these formulae in calculating the perturbations, given the anomalous

potential. One use of these equations could be to correct the observed velocity for the effects of

an anomalous potential in an iterative procedure. The relative efficiency of such a calculation,

requiring quadrature over the total anomalous potential field, compared with use of a spherical

harmonic representation would have to be investigated.
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V Satelliteto SatelliteTracking

To definethealgorithm for calculation of the perturbed position, xl, and velocity, vl,

from the unperturbed position, xo, and velocity, vo, and the along track, du, across track, dw, and

radial perturbations, dr, (Figure 1 ).

If we use the unit vectors

_xf r
(_× _).(_ ×_)

_=_xF
/

for the radial, cross track and along track

directions. More precisely, the along track unit

vector is normal to the radius vector, and not along the velocity vector, to be consistent with the

definition of the along track perturbation.

More precisely, the along track unit vector is normal to the radius vector, and not along the

velocity vector, to be consistent with the definition of the along track perturbation. So we can

write

t_ du - _= {lI • v 1 - {l° • v °
dt
Tt

8 aw = _,. v,- _o'V-o
dt

_ =_._, -,'o.L
dt

These relations lead to the perturbed velocity

[ 'ol
, ,.,

L"oJ

,_au1

m/

(5.1)

(5.2)
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Now,with two satellites(P,Q)atpositionsXpandxo, the unperturbed satellite to satellite

range Po is

_o=_/(_,o-_o)-(_,o-_o) ,,3)
from which we can obtain the unperturbed range rate

_po_ _(_ _,1
dt ,o,, po po o (5.4)

The corresponding perturbed range rate is

If we define

the perturbation in range rate, A/_ = ,bj - ,o o , is

(5.6)

(5.7)

is

The basic observable desired is the difference in velocity, i.e. the intersatellite range rate

where the SST measurement is give by (5.5). If we assume that the perturbation is along the

velocity vector, then these are related by

Ap: cos(O_)_/_,._,- _os(Ook/_o.Xo=cos(O_)v_-cos(O_)n, (5.8)

where
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cos(O_) =
(-L - Xo).._,

PV i

(5.9)

In the simulations performed here 0 was of the order of 1.0 degrees, cos(0)=0.9998.

correcting the observed range rate using

AT = Av _=_A,o/cos(0)

By

(5.1o)

m

where 0 = (Op + 00 ) / 2. This correction was applied in the following simulations, resulting

in small improvements consistent with the small size of 0.
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VI GeophysicalInverseTheory

Thetwo issues concerning the fundamental process of converting range-rate

measurements at satellite altitudes to geoid heights at the earth's surface are: a) the solution of a

boundary value problem in potential theory with incomplete data on an undefined surface, and

b) the downward continuation of the potential to the earth's surface in a manner that keeps the

errors within bounds. A related issue concerns the regularization of the data so as to account for

the mass between the geoid and the external boundary.

Geophysical Inverse Theory (GIT) allows one to address these issues in one step.. The

GIT motivation and theoretical framework was first introduced by [Backus and Gilbert, (1967):

Backus and Gilbert, (1968); Backus and Gilbert, (1970)] and has had wide application. A good

source for further developments and survey of applications and results, as well as the approach

used here, the Spectral Expansion Method (SEM) can be found in [Parker, (1977) ] and [Parker,

(1994) ]. Therefore, we provide a brief discussion of the approach, and some details of the

implementation for the problem addressed in this study.

One central idea in GIT is to seek a representation of some geophysical quantity with a

continuous function. The determination of a model with a finite number of parameters is a

problem in statistics, e.g. least squares and is not Inverse Theory. In practice, for this continuous

function, with a finite number of errorless observations, an infinite number of models can fit the

data exactly. For selection of one of these models, GIT provides methods for finding the model

that minimizes a norm, i.e. in some sense the model minimizes some property of the solution.

This is also generalized to data with errors when one would not want to fit the data exactly

anyway. There are many possible norms to chose: study of this is beyond the scope of our

discussion. The norm, used here is to find the solution that minimizes the square of model

integrated over the sphere, i.e. the so called L2 minimization. We will also introduce a

seminorm minimization, introducing arbitrary functions into the solution space that will allow

specific model parameters to be determined. Norm minimization is also a basic concept in Least

Squares Collocation [Morit-, (1978) ], and some comparison of the two methods is given in

[Parker, (1994) ].

The Geophysical Inverse Theory Spectral Expansion Method provides a means to

incorporate error analysis, an arbitrary amount of smoothing, and a direct mapping of the

observable - in this instance range rate, 6v, converted to potential difference - to geoid height,

N. As discussed in Section III, we can adopt a reference potential, U, including the principal

oblateness and other low degree and order reference potential terms that we can assume known

with sufficient accuracy. In addition we can safely assume a sphere of radius ae=6378.137 km as

the boundary surface for the boundary value problem. Finally we can assume the effects of mass

between this reference surface and the observation are negligible. Furthermore, as discussed in

section IV, the measurement of 6v between satellites P and Q, can be processed in a precision

orbit determination calculation using the reference potential, U, to obtain residuals, Av. These

residuals represent three factors: a) the potential difference, AT, between the satellites P and Q,
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b) aperturbation,n_ir,dueto AT interacting with GM/r, and c) other orbital errors. By

correcting for n_ir, and filtering the other orbital errors, the residual, Av, gives an estimate of

AT=T(P)-T(Q).

In this work we consider the fundamental desiderata to be the geoid height, N, ot_en

referred to as geoid undulation, from the reference surface. To relate geoid height to

geopotentiai we use Bruns formula [He/skanen and Morit-, (1967), page 85)]

T
/_r -.- m

Y
(6.1)

where y is gravity on the reference ellipsoid, strictly in this application it is gravity on the

reference surface. Since we are concerned with small corrections to the geopotential, we use

_,--978.0327 (cm/sec2) 6 to scale the geoid model, N, to geopotential, T.

The Poisson Integral Formula (3.1) and Bruns Formula (6.1) allows us to solve the

forward problem, i.e. given a geoid model on a reference sphere, compute the potential at a point

in space, P,. outside the reference sphere This is of the form:

T(P,) = fg(P_,S)T(S)der s = y _g(P_,S)N(S)dcrs (6.2)

The P_ is the position of the observation, S is on the reference sphere and d6, is the surface

element of integration on that sphere. The estimate of AT=T(P)-T(Q) is then written

AT(P,,Q,)= Y _[g(P_,S)- g(Q,,S)]N(S)dcr s = Y fG(P,,Q,,S)N(S)aos

Anticipating the treatment of observation errors we can by use:

(6.3)

AT,'- AT_ and G,, = G--zc
or, or,

where _, is the standard error of the observation AT t •

(6.4)

Now, the functional (6.3) is linear in the unknown, N, and therefore we have a linear

inverse problem. Assuming Pi does not lie on the reference sphere, (6.3) is also finite. With n

values, or observations, we have AT i = 1,2,... n there are n kernals in (6.3)
i

G,(S) = G(P,,Q,,S) i= 1,2,...n (6.5)

Which are n functions of position, S. With a little thought one can see that these are linearly

6 Geodetic convention defines the unit of 1.0 gal as 1.0 cm/sec 2
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independent,i.e.G_is linearly independentfrom Gj if (P,Q0is not thesameas (Pj,Qj).
Therefore they could form _aset of basis functions to represent the geoid height on the sphere,
i.e.

t/

N(S)=_ajGj(S) (6.6)

j= 1

One can show that this has the minimum norm [Parker, (1994),Chapter I]. Substitution of(6.6)

in (6.3) resulting in the matrix equation for %.

(6.7)

where F is a symmetric matrix, called the Gram matix, with elements

F,j = Fj_ = IG, (S)Gj (s)dG s
G

This system of equations can be solved for N.

(6.8)

Now, the spectral expansion method, SEM, is introduced at this point, leading to great

computational simplification and functional utility. The positive definite matrix F can be

diagonalized with an orthogonal, eigenvector, matrix ® with

O'F® = A (6.9)

where

A=diag(2a,&,_, .... ,2,),A]>&_>_> ...... A,>_0. (6.10)

The matrix of eigenvectors, 19, has the usual properties

®'® = ®®' = I (6.11)

the unit matrix l=diag(l, 1,1,.... 1). The eigenvalues, kj ,are often referred to as the spectrum of

the problem. This diagonal decomposition can be accomplished by methods such as described

in [Golub and Reinsch, (1971 ) ]. We can now define another set of orthogonal base functions 7

7 The association of l/_.j with aj follows [Parker, (1994) ]. This change from associating

l/v'Xj with both aj and yj, as in [Parker, (1977) ] is quite arbitrary, and is used to facilitate the
seminorm minimization outlined below.
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Y oj, G(P)
J

and write for the computed potential

(6.12)

rc(P)=_"a;_,(P)
t

where

(6.13)

a, = _ t_),jia j (6.14)

Substituting (6.9) and (6.14) in (6.7) we find

1

a, = 2--T _ ® j,ATj .
J

(6.15)

The a_ are uncorrelated, i.e. are statistically independent, with the standard error of each

coefficient 1/X,, i.e.

o-, = 1/2, (6.16)

These basis functions, (6.13) become more oscillatory as i increases, i.e. as _ decreases,

and approaches +0, see below for some examples. Consequently, the standard error of the

coefficients increases as i increases. The power of the SEM lies in using ;q to select the desired

solution. For example, by eliminating basis functions with high frequency oscillations - i.e.

those functions with eigenvalues less than some minimum eigenvalue, k_m - one can obtain a

smoothed solution. Of course, not using the complete eigenfunction expansion, the model,

(6.13) would not fit the data exactly. An alternative would be to add a constant, C, to each ;q in

(6.15), which has the effect of significantly reducing the effects of small eigenvalues on the

model. So, in matrix notation we have

[a]-[A +CI]-'[®'IAT] (6.17)

In the case were there are observation errors, using (6.4) in (6.7) and (6.8) leads to a new

solution if the observation uncertainties are different for each observation. Otherwise, the

standard deviation of each observation cancels, and the result is the same. This leads to

considerable computational simplification in this analysis, as we can compute (6.7) once for a

given data set, and analyze the effects of random errors by scaling F, and adding noise to AT.
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In the case were there are observation errors we can compute a statistic for the data set

n , 2

Z 2 =Z(AT, -AT/' _) =n (6.18)
i= l

This can be used as the criterion for selecting _,, or C. Having selected Lm_, or C one now has
the formal error of commission in the model

o-: _ 1 ,_r(._) = _- 2, + C _'" (S)
(6.19)

where the obvious functions are removed based on selection ofL_.

The orthogonal functions (6.12) used to represent the geoid are finite in number, and

therefore define a limited functional representation of the geoid. For example they do not

provide the same representation as the same number of spherical harmonics. The spirit of GIT is

to let the data distribution define the representation. As an aside, it is the distribution of the data

point positions (P,Q) that define the Gram matrix, (6.7), and not the actual data (AT), hence the

representation.

There may be functions that, a priori, we wish to include in the representation. For

example, a constant, low degree polynomial, or spherical harmonic, that would not be included

in the basis (6.12). For example, if the reference potential field, U, has a long wavelength error

that could be locally modeled by a low degree bivariate polynomial. By including such

functions, one cannot obtain a minimum norm, but can achieve a subnorm minimization. We

can accomplish this expansion of the basis functions as follows. Let us include in the

representation, a linear function:

nK

h(S) = _ bkh_(S)
k=l

where the b k are to be determined from the data. The model becomes

(6.20)

tl ?IK

N(S)= _a,_,(S)+ _" b,h,(S).
i=l k:l

(6.21)

Assuming that h k and _. are independent function of position, S, making the same substitutions

as before, we have the system of equations to solve
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E I=EOoT]
where the elements of the rectangular (n x nK) matrix are

A u = Ih, (S)Gj (S)dcr
(Y

and

(6.22)

(6.23)

[A] = [O'][A]. (6.24)

As with (6.4) each element of (6.24) should be divided by the observation uncertainty when

treating data containing errors. This system of equations has the solution

[b]- [A' (A+ CI)-' _]-1A'[A+ CI]-'O'[AT] (6.25)

and

[a]-[A +CII-'[O'[ATI- Ab] (6.26)

In the application here, we intend to use low degree polynomials, centered in the region of

interest (%,ko). These polynomial coefficients are used to account for errors in the reference

potential model, U. The errors are assumed to be long wavelength variations, and can be

suitably modeled with low degree polynomials in longitude and latitude. The polynomial

variables would be _-% and k,&o. Since the region of interest is of the order of a few degrees,

(<0.2 radians) we choose the variables

_: = sin(_o - _o ) (6.27)
,7= sin(,t - ,to)

with the 21 polynomials 1,{,q,_,{rl,rl:,...,{rl4,q 5. This removes questions of definition in

computing (6.23).
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VII Simulations

VII. 1 Introduction

In previous sections, necessary elements of, Potential Theory (HI), Orbit Theory (IV), and

Geophysical Inverse Theory (VI) to analyze satellite to satellite tracking data for geoid

determination have been reviewed. Now, some numerical experiments will be described that

illustrate how these elements can be combined, and what sort of results may be expected. These

numerical experiments will be progressively more complex and complete, in four stages. First

will explore the nature of the eigenvalues and eigenfunctions that come from the singular value

decomposition. This requires combining the elements of Potential Theory with Geophysical

Inverse Theory. As seen in section VI, these results depend only on the physical geometry of the

measurement, and are independent of

the measurement itself. Second, some

properties of the solution assuming a

direct measurement of potential

difference: accuracy, resolution, error

propagation, and sensitivity can be

shown. For these analyses, idealized

geoid anomalies will be used: blocks

with a dimension of 1.0 degree and 5.0

degrees will be combined. Third, an

orbital simulation using a small number

of idealized blocks is done, to illustrate

geoid recovery using SST

measurements. Finally a number of

orbital simulations will be offered, with

increasing complexity in the desired

geoid, and other orbital effects. For

these the geoid model will be the

EGM96 [Lemome and al., (1998) ]

geopotential model. EGM96 is a

complete model to degree and order

Fig_ VII 1
Geomdfy of SST Simulation

8 cm C,m_d height.,5x5 dog ,,nommly

360. For the illustrative proposes of these demonstrations, the EGM96 model will be truncated,

at degree 70, 90 and 180. In addition other physical forces will be included: lunar and solar

forces, ocean and solid body tides, atmospheric drag, solar radiation pressure, and earth albedo

pressure. The focus of these last simulations will be to demonstrate the recovery of geoid

information from satellite to satellite range rate, which involves correcting for the indirect

effects (equation 4.33) in the presence of other force model errors, that can only approximately

accounted for in the orbit fit. Exploration of the degradation of the recovered geoid in the

presence of these other forces, is a much larger effort than was addressed here, but some limited
cases will be shown.
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VII.2 Geometryof GIT

A setof datais generatedwith theparametersgivenin TableVII_ _2 1.

Table VII 2 1 Parameters for Simulation

Area Size 20 ° x20 o

Geoid anomaly Size 5°x5 °

Geoid anomaly amplitude 8 cm

Satellite Altitude 300 km- 450 km

Satellite Separation 1° - 3 ° (110 km - 330 km )

Number of Data Points 1000

Distribution of positions Random

Distribution of orientation Random

Figure VII_I is a cartoon showing this configuration of data. Figures VII_2_a,b,c, and d shows

the eigenvalues for this system, often referred to as the spectrum of the system, for various

combinations of orbit configuration. The enormous range, 10 TM , of the eigenvalues is evident.

Note that the determinant of the system, the product of the eigenvalues, cannot be computed

directly, as it is smaller than the minimum number represented in the computer (3.4x10 -4932). Of

course the logarithm can be computed

(-7075.2963). The Singular Value

Decomposition of this system, can potentially

be numerically inaccurate. The algorithm used

is taken from [Golub andReinsch, (1971) ].

The orthogonality of the eigenvectors has been

verified. However, with any linear vector space

of this dimension, one must remain aware of

possible numerical errors [Hamming, (1973) ;

Wilkinson and Reinsch, (1971 ) ]. For example,

if the position of P or Q in an observation is the

same as P or Q for another observation, the

Gram matrix will not have independent

elements. Though this is unlikely to ever to be

exactly true, we have found that we must

require all points P and Q be separated by

more than a minimum distance. For large a

system, n>1000, using a minimum distance of

20 km is satisfactory. For systems with n =

h

i0-'3_

_0-IoL

_Q-IS[

Fig_VIILa Sl_c_m

h=3_ ha -,

sepmfioe= I&g

• m • ._

i

, , , 1 , L , I _ , _ I , _ , I _ , , ,'
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several hundred, a minimum distance of 5 km works well. Figures VII_2_f,g,h,ij, and I show a

selection of the basis functions, q',, (6.11) computed from these data and eigenvectors. The

eigenvectors and basis functions have been ordered with the decreasing values of the

eigenvalues: k]_L2_L3a..._>_0. As expected from the general theory [Parker, (1994) ] the q'_

10o

_u

10-10

IB-15

Fig_V]l_2_b Specurem
] I ' T r f

\\

h=300 km

separation=3 &g
Iog(tkterminanl)=-7035.0527

iam(max)/lam(miu)=3.12el5

! ,-

I 'ce'_

' !\!

!
|

i I0_5"

L_

F

%V Tj ,,

h_5o lau

m_i,,= 1tkg
log_detet_uet) =-7380,6212 _

lmn(m_)/lam(mlo)=4.71eD

\

-I
L , I i i r , t , i I i J ,

I

ltD?_
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lamlm_x)/hmlmia)=l.94e15

" 1
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1:-1oL
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become more variable, oscillatory, as _ decreases in size. This supports the notion that by

truncating the series of basis functions, tt',, a certain smoothing is achieved by eliminating high

frequency variations.

12_ _ _XJ__7_/_ ---__

-2,Y)(',_-/_:_ _ _7_ '_ ._
-4_.x--z/_ - 7----Z_-7 -_ 2"
_ .__ _ _ -_ _.

Lorjg_ (0.5 _)

Phil0], n=1000, H=300km, d=ldeg,noise=lxl(Y'-7 rnhr,ec

Fig Vll 2_f (_J_

_i[11

o ! I i

-I0 _ 1 , 50

(0.5,_)

FiK_VII_2_
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The selection of random positions and orientations, would be expected to provide the

best set of n data points. Since the target of this analysis is the GRACE mission, the physical

orientation of the data in low and mid latitudes will be controlled by the satellite inclination

(87 °) - near the pole, of course, all orientations will be obtained. Therefore, this experiment is

repeated with the parameters given in Table VII 2 2.

Table VII 2 2 Parameters for GRACE Simulation

Area Size 20°x20 °

Geoid anomaly Size 5 °x5 °

Geoid anomaly amplitude 8 cm

Satellite Altitude 400 km

Satellite Separation 3 ° (330 km)

Number of Data Points 1000

Distribution of positions Random

Distribution of orientation 87 °, 183 °

Figure VII 2 e shows the eigenvalues for this GRACE system, otten referred to as the spectrum

of the system. Table VII 2 3 summarizes the eigenvalues of the cases presented. With the

GRACE data we see the same range, 10 _4, of the eigenvalues is present as existed in the

Table VII 2 3 Eigenvalue Summary

h(km) Separation Determinant k_,J_i . _

(°)

300 1.0 5.05×10 "7°7_ 2.60×1014 3.24×102

300 3.0 8.86×10 .7036 3.12×1015 2.24×103

450 1.0 2.39× 10 "7381 4.71 x 1013 9.09× 101

450 3.0 3.59× 10 .7334 1.94× 1015 6.76× 102

450 GRACE 3.0 7.42×10 .6928 7.54x1013 1.00x 103

previous case. Figures VII 2 m,n,o,p, and q show a selection of the basis functions, W., (6.11 )

computed from these data and eigenvectors. The same general character of the basis functions is

evident. The geometry of the GRACE data set does not seem to be a factor in application of GIT

to geoid recovery.
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VII_3 Error analysis

Errors in the measurement of potential difference come from two difference sources.

First are the inherent measurement errors that will, for this analysis, be assumed to be

uncorrelated, zero mean, Gaussian noise with a given standard deviation, o, i.e. normally

distributed errors. The second source is the process of converting the observed velocity

difference (A dp/dt) into the potential difference (AT). This involves both geometrical

corrections (Section V), correction for the dynamical interaction between AT and GM/r (section

VII 5 3 below), and other unmodeled orbital effects. The first source will be studied in this

section. The second will be studied in following sections, and will provide some information

about scaling the standard deviation to take these other phenomena in to account in the

estimation process.

The data sample described in Table VII 2 1 is used. Potential at satellite positions P,Q

is computed using Poissons Integral Formula, (3.1) and the difference used as the observation.

Gaussian noise is added, computed using an algorithm from [Hamming, (1973), p 143] based on

the system random number generator. These data are used to determine the constant C, (6.17)

based on the condition (6.18) using the method ofRegula Falsi [Hamming, (1973), p 65].

Recall, that the GIT SEM can obtain a solution for the expansion coefficients, that exactly

matches the observations and has a minimum variance of the model. What we seek is the

solution, that only matches the observations to within the observation uncertainty, and has the

minimum model variance. For illustrative purposes, three observation uncertainties are used, as

given in Table VII 3 1. Also given are the determined value of C/;k_,,x, and C. Choosing C has

the same practical effect as removing all )_<-- C.

h(km) Separation

(°)

n (m/sec) C C/_m,x

300 1.0 1000 1.0xl 0.5 6.44x 10; 1.98xl 0 -3

300 1.0 1000 1.0xl0 "6 6.73x 10 "2 2.08x 10 "4

300 1.0 1000

300 3.0 1000

300 3.0 1000

300 3.0 1000

1.0xl0 7 2.56x10 3 7.90x10 _

1.0xl0 -5 2.71x10 1 1.21x10 _

1.0xl04 1.81x10 2 8.08x104

1.0xl0 "7 3.86x10 _ 1.72x10 "7

Figures VII 3 a, VII 3 b, and VII 3 c, show the recovered geoid for these data sets. Clearly,

higher accuracy, smaller o, provides greater resolution.
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One important product of the GITSEM process is computation of a formal uncertainty of

the model, (equation 6.19). To illustrate this, note that the model has zero signal outside the 5 °x

5 o geoid anomaly. Figure VII 3 d, is the recovered geoid, where, a zero is plotted when the

computed model is less than 3 times the computed uncertainty of the model. The values
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predicted by the model outside the 5 °x 5 ° geoid anomaly are not significantly different from

zero, as determined by the model.

Finally, the resolving power of the GITSEM, i.e. the sensitivity and resolution, is

investigated as follows. With the analogue of a matched filter, we ask, what fraction of the

signal amplitude is recovered? This will depend on the satellite altitude, the satellite separation,

the size of the geoid anomaly, and the observation uncertainty. A series of simulations was done

with the variables given in Table VI 3 2.

Table VII 3 2 Resolving Power of GITSEM

Satellite Height (km) 150 200 250 300 350

Satellite Spacing (km) 110 220 330

Anomaly Size (°) 1 2 3 4 5

Data Accuracy (rn/sec) 1.0xl0 5 1.0xl0 "6 1.0xl0 "7

400

Figures VII 3 e and VII 3 fsummarize these results. Clearly lower satellite altitude and larger

12

1

o.8

Jo.
O4

02

0

0

Figure VII 3_e A_lo,n (3 {log sl_clag)

1 2 3 4 5

--_-- 150 km ;

-._--280 km,

--I_-- 300 km ,

-,,-aao _ i
.-.o.- 45G kJm I

anomaly block size give higher resolution. As seen in numerous previous studies, there is an

inherent limitation in recovery of geoid anomalies smaller than the satellite height. There is a
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smallereffectof satellite separation, larger separation providing somewhat more sensitivity.
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VII 4 SimulationGeoidBlockAnomalies

An exampleis nowgivenwith several geoid block anomalies. Four anomalies are created

as shown in the cartoon, Fig_vii 4 a and described in Table VII 4 1.

Figure VII 4 a

H
_llOkm

32 cm

Geometry of SST Solution

32 cm Geoid height, lx5 des} anomaly (twice)

-12 cm Geoid height, lx10 deg anomaly (twice)

Table VII 4 1 Block Anomaly Simulation

height (km) 300

separation ( ° ) 1.0

n (data) 1000

o (m/sec) 1.0× 10.7

Anomaly 1 (size,amplitude) 1° ×5 ° ,32 cm

Anomaly 2 (size,amplitude) 1° x 5 ° ,32 cm

Anomaly 3 (size,amplitude) 1 ° × 10 o ,- 12 cm

Anomaly 4 (size,amplitude) 1° x 10 ° ,-12 cm
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As before, the potential at satellite positions (P,Q) is computed using Poissons Integral Formula

(3.1) and the difference used as the observation. Gaussian noise is added. The two 32 cm

anomalies are resolved. However, only 75% of the amplitude (24 cm) is recovered. Similarly,

the -12 cm anomalies are resolved with reduced amplitude (-8 cm).

-48-



VII 5 Orbit Simulation

VII 5 1 Introduction

The end to end orbit simulation process is described in figure VII 5 1. It begins with

simulated satellite to satellite range rate data. The parameters of the simulations are summarized

in Table VII 5 1, and are intended to represent the GRACE mission. The initial state vectors are

defined in Table 4.1. However, before reviewing the simulation results, the calculation of the

potential difference, AT, from the observed satellite to satellite range rate, dp/dt, must be

discussed. Now, we are interested in the contribution of the anomalous potential, T, to the range

rate. Therefore, the first step is to perform a Precision Orbit Determination (POD) using the SST

data and any other available tracking data - here assumed to be ground based laser tracking -

using a chosen reference potential, U, to obtain the orbit residuals, A dp/dt. These residuals

contain the desired signal, the interaction terms from n_ir, and other orbital errors due to

inadequate force models. Therefore, we now discuss the following three topics: 1) The filter

parameters, 2) Calculation of the interaction correction, nSr, and 3) the geoid database used for

calculation and comparison of the results.

Table VII 5 1 Simulation Parameters

Data Geometry 400 km altitude, I=87 °, 400 km separation

SST Data 10 second range rate data

60 Day mission

Ground Tracking Stations 18 laser ranging stations tracking both satellites

Force Model Total Geopotential: 1=2,70, 2-90, 2-180

Sun, Moon Tides (Ocean Body)

Drag (MSIS), Solar Pressure, Earth Albedo

Reference Potential: 1=2-40, 2-90

Orbit Arcs 1 day

Solve for parameters: drag scale factor

Map Region Eastern Mediterranean

Filter parameters _o,,=800 sec, _h,_=30 sec, (5600 km, 47 °)

VII 5 4 Filter Parameters

To calculate the potential difference (AT) from the observed satellite to satellite tracking

velocity residuals (A dp/dt) we start with equation (4.33) is used. Recall, the AT response of the

satellite velocity was local, and takes place immediately. However, the interaction perturbation
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n6r has an instantaneous component, but also has a cumulative effect, that results in periodic

changes with, in fact, the orbital period. Since we are interested in the instantaneous change due

only to AT we chose to filter out signals with periods longer than the time passing over the

region of interest. The satellite traveling at 7.5 km/sec, passes over 40 ° of latitude (4400 km) in

less than 600 seconds. So filtering signals with periods longer than 600 seconds or more, would

leave all the instantaneous signals. In fact, the results are not very sensitive to the period cutoff,

we experimented with cutoffs of 600, 800, 1200, 1600, 2400, and 4800 seconds, and adopted

800 seconds for all the analysis. The filtering was accomplished using a Fast Fourier Transform

Algorithm [Press et al., (1991) ]. Each one day arc of residuals (8640 data), was filtered

separately. The data were padded with zeros to obtain a sequence of exactly 2" points. The

Fourier coefficients were then convolved with a 10 _horder Butterworth filter. To mitigate
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measurementnoise,i.e. highfrequencynoise,a30 second short period cutoffwas also applied.

The resulting Fourier coefficients were then converted back to the time domain.

FiguresVII 5 2 a and VII 5 2 b illustrate the result of this filter. The test case has a total

U

3¢
"ID

0.05

Fi VII 5 2 aFiltered dr/dt

dv(fihered)

dv(raw)

Filter Parameters

800 sec., 30 sec.

geopotential (U+T) to degree and order 70, and a reference geopotential (U) to degree and order

40. Figure VII 5 2 a shows the computed residual (A dp/dt) and the filtered values (A dp/dt_,0_3o)

for three passes over the chosen region. Figure VII 5 2 h shows the filtered values of the

computed residual (A dp/dtsoo._o), the computed values of the potential difference (AT), and the

difference, and the difference (A dp/dtsoo.3o-AT). For this comparison, the computed potential

difference is converted to velocity using V=U÷T=TN=v6v. The variances of the computed

residuals (0.0252 cm/sec = 252 o/sec) and the computed potential difference (0.0246 cm/sec =

246 p/sec) are nearly the same. The standard deviation of the difference (0.0024 cm/sec) is about

10% of the signal, as predicted in section III. The difference between the computed residual and

the potential difference is due to the interaction term, to be discussed in the next section, and
other orbital errors.
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Fi VII 52 b
I

dr/dt(fihered)

T

20

Filtered dv, calculated T
I ' ' ' I ' ' ' I ' ' ' I ' ' '

Filter Parameters
• 800 sec., 30 sec.

sig(dr/dt) =0.0252 cm/sec

sig(T) =0.0246 cm/sec

sig(dr/dt - T)=0.0024 cm/sec

VII 5 3 Calculation of n/Sr

If one knows the anomalous potential (T), then we have shown that the correction (n6r)

can be computed with sufficient accuracy. Here, this is not the case. Therefore, we develop an

approximation based on the available data. Recall that the computed residuals A dp/dt

=AT/_T(P)-T(Q))/v. Therefore, if the two satellites are in the same circular coplanar orbit then

one can use the computed residuals, A dp/dt, to compute an approximation to the potential along

the orbit. This is only approximately true because of the inevitably different evolution of the

orbits, and that the earth rotation will result is a different potential at the same orbit position at a

different time. We give in Figure VII 5 3 a the potential recovered by this method, expressed as

velocity, and the computed anomalous potential, T. Again the case studied is total potential

_P=U+T complete for !=2-70, the reference potential U:2-40, and the anomalous potential T:41-

70. Now, the correction cSrdepends on the combination 2T+r(aT/ar). We obtain the second term

as follows. Assume that we have the spherical harmonic expansion for T, i.e.

=-- -- _m(sin _p)(_ m cosm2 + Sts sin m2)
P 1 lmm P m=0

(7.1)
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g I

(7.2)

and the desiderata

R 1

Jr Z (l+ r,
r-_- = 1) r-777_L

/--lmin

(7.3)

Consider, an arc, in any orientation on the earths surface containing the point of interest (_o,Xo) in

the orbit subsatellite track. The arc, and (tpo,Xo) define a coordinate system and the spherical

harmonics can be transformed to this system. Now, along this arc, the longitude is zero and (7.1)

reduces to an expansion in Legendre polynomials. So we take the recovered T, along the arc, and

expand it in Legendre polynomials through degree 142. This expansion is centered on the point

of interest, (_o,_o), and for -m'2 to rd2 along the orbit. From this expansion, the sum (7.3) is

evaluated at (_,,,_o). Figure VII 5 3 b shows this gradient is shown as recovered from A dp/dt,

and computed from the, in this case, known potential. The same tracks are used as before.

m

Fi VII 5 3 a Recovered Anomalous :41 70

dr/dr recovered T
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The generally good agreeement between the recovered and model values of r(c_T/&) is

satisfactory considering the purpose here is to calculate a 10% correction. The correction is

calculated for each satellite separately, and then n_ir=n(_ir(P)4ir(Q)) is computed and added to the

observed A dp/dt to obtain the estimate of AT/T to be analyzed. Recall, that the calculated 8r will

introduce long period perturbations. Therefore, the result for 8r, will also be filtered before being

used, using a 6000 second cutoff period Figure VII 5 3 c shows the computed values for n6r(P)

and of n_ir. n_r(Q) is not plotted simply because it is shifted in time from n/ir(P) by p/v _ 400

(km)/(7.5 km/sec) = 53 seconds.
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How well does this calculation work? In figure Fig_VII 5 3 d we show the filtered orbit

residual Adp/dt minus the computed dv(model)/dt, and the calculated n&, for the same three

tracks used above. One sees the signature of ndr. In addition there is a larger signal due,

presumably to other unmodeled effects. Figure VII 5 3 e shows the result of correcting the

observed velocity with n_ir.

Examination of many samples of data, give similar results. It is clear, that the conversion

of observed range rate residual, Adp/dt, to AT/T has remaining unmodeled errors. Though only of

the order of 5% to 10% of the desired signal, they limit the accuracy of the recovered geoid, as
will be discussed below.
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VI 5 5 Geoid Data Base

For facilitating comparison of the recovered geoid, N, with the model geoid, N(model), a

geoid data base has been created. The fundamental coordinates used are geodetic latitude and

longitude. The surface of the earth is divided into 0.5 ° (55 km), approximately equal area blocks.

These blocks are arranged in 0.5 ° latitude bands, with coordinate qr-_.25°+k×0.5 °. Each latitude

band is divided into n=[coS(_o)× 360.0/0.5 + 0.5] blocks, where the symbol Ix] signifies the

integral part of x. The longitude blocks have the size Ak=360.0°/n. When extracting data in the

data base, there are two options. First, is to return the same value for all points within the block.

Second, is to use linear interpolation, as a ruled surface, for a point bounded by four data points.

When creating a geoid data base from the potential expressed in spherical harmonics, e.g.

the EGM96, we assume that the independent variables are geocentric latitude and longitude.

When evaluating the spherical harmonics, for insertion in the geoid data base for a geodetic

latitude and longitude, these are converted to geocentric latitude and longitude for the

calculation. Note that this is consistent with generation of satellite observation residuals, Adp/dt.

In archiving the satellite residuals the coordinates of the two satellites (P,Q) are archived as

height above the reference ellipsoid, geodetic latitude and longitude, as well and the geocentric
Cartesian coordinates and velocities.
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VII 6 Orbit Simulation

VII 6 1Introduction

In previoussections,necessaryelementsof, Potential Theory (III), Orbit Theory (IV), and

Geophysical Inverse Theory (VI) to analyze satellite to satellite tracking data for geoid

determination have been reviewed. Some numerical experiments were described that illustrate

how these elements can be combined, and what sort of results may be expected. These numerical

experiments were progressively more complex and complete First the nature of the eigenvalues

and eigenfunctions that come from the singular value decomposition were described. These

results depend only on the physical geometry of the measurement, and is independent of the

measurement itself. Second, some properties of the solution assuming a direct measurement of

potential difference: accuracy, resolution, error propagation, and sensitivity were shown. For

these analyses, idealized geoid anomalies were used: blocks with a dimension of 1.0 degree and

5.0 degrees were combined. Now a number of orbital simulations will be offered, with increasing

complexity in the desired geoid, and other orbital effects. For these the geoid model will be the

EGM96 geopotential model [Lemoine and al., (1998) ]. EGM96 is a complete Spherical

Harmonic representation to degree and order 360. For the illustrative proposes of these

demonstrations, the EGM96 model will be truncated, at degree 70, 90 and 180. In addition other

physical forces will be included: lunar and solar forces, ocean and solid body tides, atmospheric

drag, solar radiation pressure, and earth albedo pressure. The focus of these last simulations will

be to demonstrate the recovery ofgeoid information from satellite to satellite range rate, which

involves correcting for the indirect effects (equation 4.33) in the presence of other force model

errors, that can only approximately be accounted for in the orbit fit. Exploration of the

degradation of the recovered geoid in the presence of these other forces, is a much larger effort

than was addressed here, but some limited cases will be shown.

The parameters of the simulations are summarized in Table VII 5 1, and the initial state

vectors are defined in Table 4.1. These are intended to represent the GRACE Mission. The

end-to-end orbit simulation process is described in Figure VII 5 1. It begins with simulated

satellite-to-satellite tracking (SST) range rate data. Now, we need to obtain the contribution of

the anomalous potential, T, from the observed range rate. Therefore, the first step is to perform a

Precision Orbit Determination (POD) using the SST data and any other available tracking data -

here assumed to be ground based laser tracking - using a chosen reference potential, U, to obtain

the orbit residuals, A dp/dt. These residuals contain the desired signal, the interaction terms from

nrr, and other orbital errors due to inadequate force models. Therefore, the calculation of the

potential difference, AT, from the observed satellite to satellite range rate, dp/dt, is accomplished,

as described above, using the POD residuals. A number of cases are computed, summarized in
Table VII 6 1.
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Case Total
Potential

U+T

Table VII 6 1 Parameters of Orbit Simulations

Reference

Potential

U

1=2-70 !=2-40

1=2-180 1--2-90

1=2-90 !=2 -40

4 1=2 - 180

5 1=2 - 180

1=2 -90

1=2 -90

Other Forces Latitude

Range

Longitude

Range

Sample

POD 6

(cm/sec)

Sun,Moon,Tides 200-50 ° 200-30 ° 0.03

Sun,Moon,Tides 20°-50 ° 20 °-30 ° 0.01

20 °-50° 20 °-30" 0.03Sun,Moon,Tides

Drag, Solar

Pressure, Earth

Albedo

20 °-50 °

29o-41 o

Sun,Moon,Tides

Drag, Solar

Pressure, Earth
Albedo

20 °-30 o

23 °-27°Sun,Moon,Tides

Drag, Solar

Pressure, Earth

Albedo

0.01

0.01

VII 6 2 Region of Interest.

The main thrust of using the GITSEM is to obtain local or regional maps of the geoid,

from the measurement of SST range rate. We have chosen one region for the simulation: the

Eastern Mediterranean Sea. This region is tectonically active, and has a significant signal at all

wavelengths. Therefore, it provides a useful geophysical test bed for the method. Figure VII 6 a

is a free air gravity anomaly map of the region, centered roughly on the island of Crete.

VII 6 3 Case l

We begin with the total potential, U+T, complete for degree and order 1=2 through 70 and

the reference potential, U, complete for 1=2 though 40. Therefore, the anomalous potential

sought, is complete for 1-41 though 70. The 60 day mission is processed, and the observations

selected requiring that no positions P or Q are closer than 20 km. This resulted in 1187

observations. The Gram Matrix calculation and Singular Value Decomposition provided the

eigenvalues and eigenvectors. Smoothing was achieved by selection of the Lagrange Multiplier,

C. Table VII 6 2 gives the values. Figure VII 6 b shows the recovered geoid, and Figure

VII 6 c shows the anomalous geoid (1=41 through 70). Also given in Table VII 6 2 are
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statistics of the geoid fit. We see the general agreement of features. The statistics of this solution

is as follows. The variance of the geoid for the selected region is 268.0 cm. The rms of the geoid

fit is 88.2 cm. To identify the error sources in this map, the orbit positions (P,Q) are used, i.e. the

same Gram Matrix, and the observed potential difference is calculated from the geoid model

using the Poisson Integral formula (3.1). For this calculation the rms of the geoid fit is 23.0 cm.

Figure VII 6 d shows this recovered geoid. This calculation is repeated selecting orbit positions

with a minimum position difference of 10 km. This results in n=1881 observations, and has an

rms ofgeoid fit of 16.7 cm. This is a marginal improvement considering the increased dimension

of the basis functions. A number of remarks are in order. First, it is not possible to obtain exact

agreement between the spherical harmonic representation and the GITSEM. This should not be

surprising, considering the fact that these use fundamentally different basis functions, and they

are finite in dimension. Second, the GITSEM does have the potential to achieve centimeter

accuracy in geoid height. Third, errors in the recovered geoid are due to errors in converting the

observed range rate residuals, A dp/dt, to potential difference,AT.
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TableVII 6 2 Summaryof Geoid Results

Case

o

n

1187

1187

1881

1186

1186

1913

1135

1132

5 271

C/L_=I0 _

C/_=IO "_

C/_max=10 "9

10"2(107)

10"(402)

10 .2 (131)

C/_%,_=10 _

5×10"(173)

C/k_ax = 10_

Obs 6

(crWsec)

8.91×10 "l

3.61×10 .3

3.18×104

7.59×10 .2

1.61x10 _

7.90x10 "2

8.90× 10"l

2.92×10 .2

3.01 × 10.2

Var(Obs)

(cm/sec)

21.85

21.97

20.90

2.67×10 -t

2.54×10 -I

2.68×10 -t

22.59

2.55×10 -I

3.36×10 -t

Geoid

height 6

(cm)

88.2

23.0

16.7

64.37

21.17

69.72

85.52

57.01

53.1

Var

(geoid)

(cm)

268.0

268.0

268.0

86.38

86.38

86.38

303.2

86.38

124.5

Comment

2O km

separation

Upward
Continuation

10km

separation

20 km

separation

Upward
Continuation

10 km

separation

20 km

separation

20 km

separation

5 km

separation
Limited Area

VII 6 4 Case 2

In this case we illustrate recovery of smaller scale features of the geoid. Therefore, we

begin with the total potential, U+T, complete for degree and order 1=2 through 180 and the

reference potential, U, complete for 1--2 though 90. Therefore, the anomalous potential sought, is

complete for 1-91 though 180. As before, the 60 day mission is processed, and the observations

selected requiring that no positions P or Q are closer than 20 km. This resulted in 1186

observations. The Gram Matrix calculation and Singular Value Decomposition provided the

eigenvalues and eigenvectors. Smoothing was achieved by selection of a minimum eigenvalue,

_. Table VII 6 2 gives the values. For the cases where k_ has been chosen, the number of

eigenfunctions used for the model is given in parenthesis. Figure VII 6 e shows the recovered

geoid, and Figure VII 6 fshows the anomalous geoid (1--91 through 180). Also given in Table
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VII 6 2 are statistics of the geoid fit. We see the general agreement of features. The statistics of

this solution are as follows. The variance of the geoid for the selected region is 86.38 cm The

rms of the geoid fit is 64.37 cm. To identify the error sources in this map, the orbit positions

(P,Q) are used, i.e. the same Gram Matrix, and the observed potential difference is calculated

from the geoid model using the Poisson Integral formula (3. l). For this calculation the rms of the

geoid fit is 2 I. 17 cm. Figure VII_6_g shows this recovered geoid.

Fi Vll 6 Sintulated Geoid

VII 6 5Case3

In this case we illustrate geoid recovery in the presence of non gravitational forces,

thermosphere drag, solar radiation pressure, and earth albedo pressure. In this case the MSIS

thermosphere model is used, a solar pressure model, and an earth albedo pressure model, in

generating the simulated data, and in the precision orbit determination (POD). In the POD, a 5%

error is introduced in the overall model, and a drag scale "solve for" factor is included. We

begin with the total potential, U+T, complete for degree and order 1=2 through 90 and the

reference potential, U, complete for !=2 though 40. Therefore, the anomalous potential sought, is

complete for !-41 though 90. As before, the 60 day mission is processed, and the observations

selected requiring that no positions P or Q are closer than 20 km. This resulted in 1135

observations. The Gram Matrix calculation and Singular Value Decomposition provided the

eigenvalues and eigenvectors. Smoothing was achieved by selection of a minimum eigenvalue,
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_m. Table VII 6 2 gives the values. For the cases where k_ has been chosen, the number of

eigenfunctions used for the model is given in parenthesis. Figure VII 6 h shows the recovered

geoid, and Figure VII 6 i shows the anomalous geoid (1=41 through 90). Also given in Table

VII 6 2 are statistics of the geoid fit. We see the general agreement of features. The statistics of

this solution as as follows. The variance of the geoid for the selected region is 303.2 cm. The

rms of the geoid fit is 85.52 cm. The fact that the results here are so similar to Case 1, is

encouraging, in that the presence of nongravitational forces, and errors in modelling them, seem

to have a small effect on the geoid recovery. This is consistent with the idea that the effects of,

and errors in, drag and solar pressure have quite a different spectral character, and should be

separated from the geoid. However, the thermosphere models used here are quite smooth, and do

not even attempt to represent small scale thermosphere variations such as gravity waves, winds,

etc. No doubt, great care will be necessary in treating these non-gravitational forces.

VII 6 6Case4

In this case we continue to illustrate geoid recovery in the presence of non gravitational

forces, thermosphere drag, solar radiation pressure, and earth albedo pressure, but for finer

scale geoid features. The MSIS thermosphere model, a solar pressure model, and an earth

!
-Q

VII 6 Recovered Geold Reference U:2

20 2/ _M 26 _ 30

albedo pressure model, are used generating the simulated data, and in the precision orbit

determination (POD). In the POD, a 5% error is introduced in the overall model, and a drag

scale "solve for" factor is included. We begin with the total potential, U+T, complete for

degree and order 1=2 through 180 and the reference potential, U, complete for i=2 though 90.
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Therefore,the anomalous potential sought, is complete for 1-91 though 180. As before, the 60

day mission is processed, and the observations selected requiring that no positions P or Q are

closer than 20 km. This resulted in 1132 observations. The Gram Matrix calculation and

Singular Value Decomposition provided the eigenvalues and eigenvectors. Smoothing was

achieved by selection of a minimum eigenvalue, L_. Table VII 6 2 gives the values. For the

cases where kin, has been chosen, the number of eigenfunctions used for the model is given in

parenthesis. Figure VII_6_j shows the recovered geoid. Also given in Table VII 6 2 are

statistics of the geoid fit. We see the general agreement of features. The statistics of this

solution as as follows. The variance of the geoid for the selected region is 86.38 cm. The rms

of the geoid fit is 57.01 cm.

VII 6 k Recovered Geoid U +T:2-180 U:2-90_

24 21_

L_ngrt_(deg_

VII 6 7Case5

In this case we continue to illustrate geoid recovery in the presence of non gravitational

forces, thermosphere drag, solar radiation pressure, and earth albedo pressure, for finer scale

geoid features. Here, we reduce the area of interest, and decrease the minimum distance

between points (P or Q), to see if this would increase the recovered geoid resolution. As above,

the MSIS thermosphere model, a solar pressure model, and an earth albedo pressure model, are

used generating the simulated data, and in the precision orbit determination (POD). In the

POD, a 5% error is introduced in the overall model, and a drag scale "solve for" factor is
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included. We begin with the total potential, U+T, complete for degree and order 1=2 through

180 and the reference potential, U, complete for 1=2 though 90. Therefore, the anomalous

potential sought, is complete for 1-91 though 180. As before, the 60 day mission is processed,

and the observations selected requiring that no positions P or Q are closer than 5 kin. This

resulted in 271 observations. The Gram Matrix calculation and Singular Value Decomposition

provided the eigenvalues and eigenvectors. Smoothing was achieved by selection of a

minimum eigenvalue, _,. Table VII 6 2 gives the values. For the cases where _, has been

chosen, the number of eigenfunctions used for the model is given in parenthesis. Figure

VII 6 k shows the recovered geoid and Figure VII 6 I shows the anomalous geoid (1=91

through 180). Also given in Table VII 6 2 are statistics of the geoid fit. We see the general

agreement of features. The statistics of this solution as as follows. The variance of the geoid

for the selected region is 124.5 cm. The rms of the geoid fit is 53.1 cm.

VII_6_I EGM96 Geoid

24 Z8

Longrtuchs(dlg_
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VIII Discussion

The geoid recovered in all cases represents the major features of the model geoid.

It is not possible to obtain exact agreement between the spherical harmonic representation and

the GITSEM This should not be surprising, considering the fact that these use fundamentally

different basis functions, and they are finite in dimension. Second, the GITSEM does have the

potential to achieve centimeter accuracy in geoid height. Third, errors in the recovered geoid

are due to errors in converting the observed range rate residuals, A dp/dt, to potential

difference, AT

The present accuracy of the orbital simulation, does not meet the objective of achieving

0.5 _t/sec range rate residuals, and centimeter accuracy short wavelength geoid height.. Due to

limited scope of this analysis, refinements of calculating the potential difference AT, from the

range rate residuals, A dp/dt, could not be explored. The current method has an error of -5%.

There are a number of avenues to be investigated. First would be use of short arc calculation to

obtain the residuals. Since we believe that the remaining error is due to unmodeled orbital

errors, this could reduce these errors. The second would be to use an iterative method. Taking

the first solution for the geoid, calculate a correction to the residuals, and repeat the GIT geoid

estimate to obtain a correction. A third method would be to develop a recursive digital filter,

based on the orbit model, to improve the correction estimate.

In a careful and detailed analysis Jekeli, [dekelJ, (1981 ) ] has shown two critical results.

Jekeli combines the error of representation (3.20) and the error of omission (3.19 suitably

generalized for r<R as 3.17) as the downward continuation error - the error of commission is

not included. Jekeli, with _ ---300, finds (tables 3 and 4) that the DCE largest near the poles

o(er) <0.090 mgals (0.290 mgals max) gravity anomaly and o(e,) <0.042 cm (0.14 cm max)

geoid height. Second, by seeking anomalies averaged over a spherical cap of about 1.4 degrees

(tables 6 and 7), the DCE - again largest at the poles, is estimated to be o(e,) <0.004 mgals

(0.014 mgals max) gravity anomaly and o'(er) <0.0020 cm (0.0066 cm max) geoid height.

Therefore the conclusion ofJekeli [dekeli, (1981), p 127] "The downward continuation errors

depicted in tables 3 through 7 are completely insignificant with respect to anticipated

measurement accuracies of 1 mgal and 10 cm in the gravity anomaly and geoid undulation,

respectively." And, '".. the estimation of point or mean gravity anomalies and geoid

undulations (height anomalies) using the outer series expansion to degree 300 anywhere on the

earth's surface is practically unaffected by the divergence of the total series." We believe that

using a spherical approximation for the anomalous potential, has sufficient accuracy for our

geoid estimate.

We turn now to the question of computer resources needed for this analysis. This study

has been done on an INTEL Pentium II, 233 Mhz PC. Storage on this class of machine is quite

adequate. However, the processor speed limits the analysis. There are two major steps in the

computation: 1) the Precision Orbit Determination (POD) and 2) calculation of the Gram

Matrix. For this analysis, we use the canonical 60 day mission. The POD is accomplished in

less that 1 day, the exact amount of time, of course, depending on the force model complexity,
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andthenumberof iterations(i.e. ontheamountof baddatato bescreened).This is not
limiting. Thealgorithmsdevelopedfor calculatingtheGramMatrix, requireabout0.2secper
matrixelementon this machine.Beinga symmetricmatrix thetime for eachregionwouldbe
0.2xn×(n+l)/2 seconds.Sofor n=1000,weneedabout28hoursof processortime. This is the
bottleneck.Assumingtheregionaldimensionusedin thisanalysis,20×30=600squaredegrees,
therewouldbe70suchregionsfor thewholeearth.Presumably,for globalanalysis,onewould
wantto usetheclassicalsphericalharmonicanalysisanyway.In addition,thePCprocessor
usedhereis nowobsolete:thereare1Ghzprocessorson themarketnow. A factorof 10
improvementin runningtime is easilyachievedwith PCarchitecturetoday,andgreaterspeedis
availablewith moreadvancedandexpensivecomputerarchitectures.If desired,oncesetup,
onecouldproduceaglobalsetof geoidmapsin a fewdays.It seemsthat thisapproachis
feasible.
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